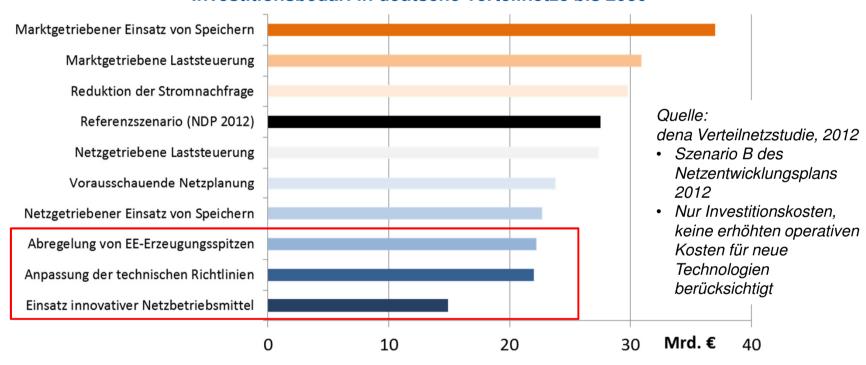

Anforderungen der Anwender an Smart Energy und Lösungswege aus Sicht RWE Deutschland AG

Dr. Andreas Breuer Leiter Neue Technologien/Projekte RWE Deutschland AG

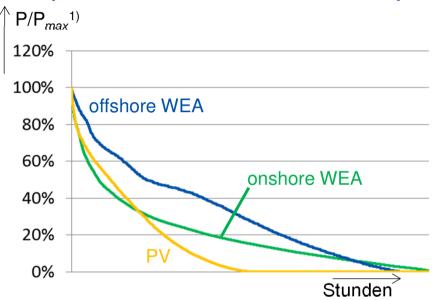
VORWEG GEHEN

Große Teile der neuen Erzeuger sind in die Verteilungsnetze eingebunden und müssen dort integriert werden



- > Rund 2/3 der angestrebten EE-Erzeugung muss in die Verteilungsnetze und mit Fotovoltaik insbesondere in die MS/NS-Netze integriert werden
- Neben der offshore Windanbindung sind geplante EU-Stromimporte eine zentrale Herausforderung für das deutsche Übertragungsnetz

Investitionsbedarf in deutsche Verteilnetze kann durch intelligente Lösungen signifikant reduziert werden


Investitionsbedarf in deutsche Verteilnetze bis 2030

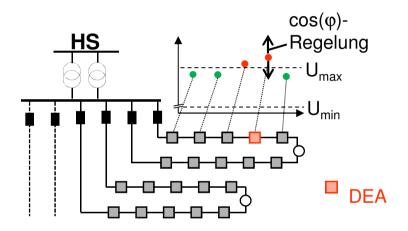
- > Individuelle Betrachtung einzelner Maßnahmen zeigt deutliche Einsparpotenziale auf
- Marktgetriebener Einsatz neuer Technologien und Strategien führt zu höherem Investitionsbedarf im Verteilnetz
- > Potenziale sind nicht unabhängig voneinander und dürfen nicht direkt addiert werden

Netzplanung zur vollständigen Integration von Erneuerbaren Energien wird bereits heute hinterfragt

Exemplarische Jahresdauerlinie der EE-Einspeisung

Max. Einspeise- leistung	Energieverlust [W _{cut} /W _{ges}]		
	WEA		PV
	onshore	offshore	FV
100% P _{max}	0 %	0 %	0 %
90% P _{max}	<0,1 %	0,2 %	<0,1 %
80% P _{max}	0,4 %	1,2 %	0,6 %
70% P _{max}	1,3 %	3,1 %	2,1 %

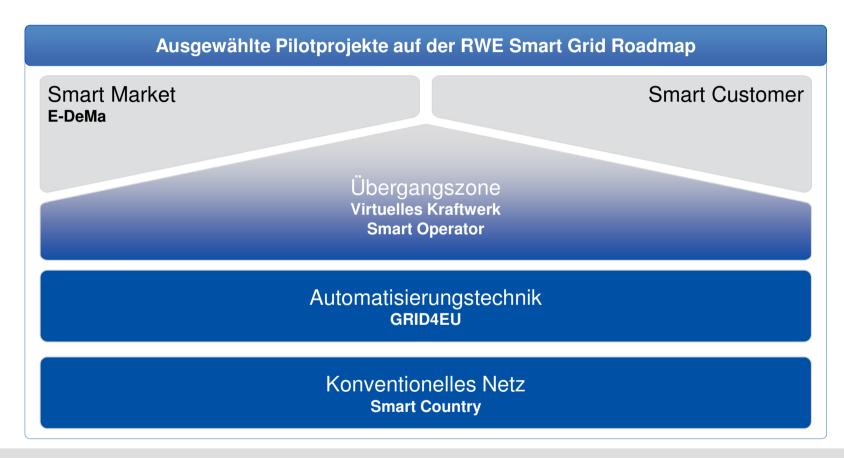
Quelle: Veröffentlichung TenneT TSO


EE-Einspeisung für März 2012- Februar 2013

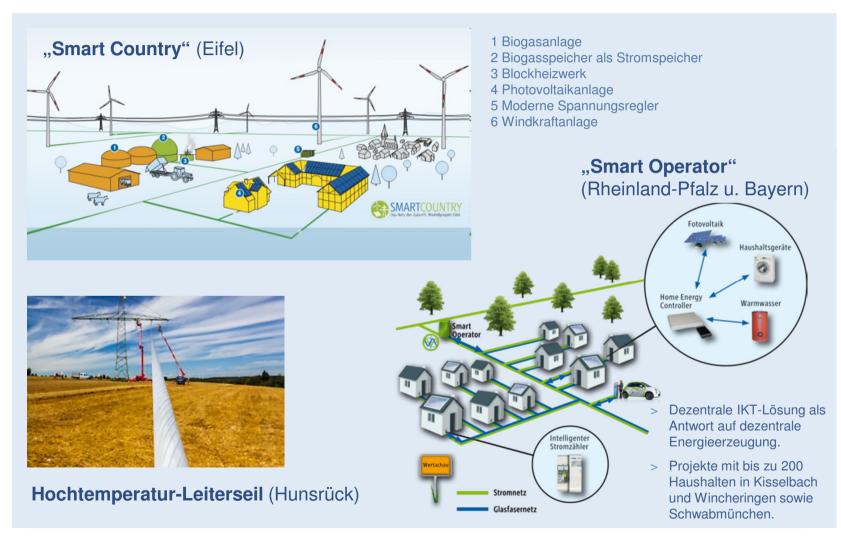
- > Eine Reduktion der maximal ins elektrische Netz einspeisbaren EE-Leistung führt aufgrund der wenigen Stunden mit maximaler Einspeisung zu geringen Energieverlusten
- Die aktuelle Fassung des EEG sieht für PV-Einspeiser mit einer installierten Leistung kleiner 30 kW bereits heute eine Begrenzung P_{Einspeisung,max}=70% P_{installiert} als Alternative zum Einspeisemanagement vor

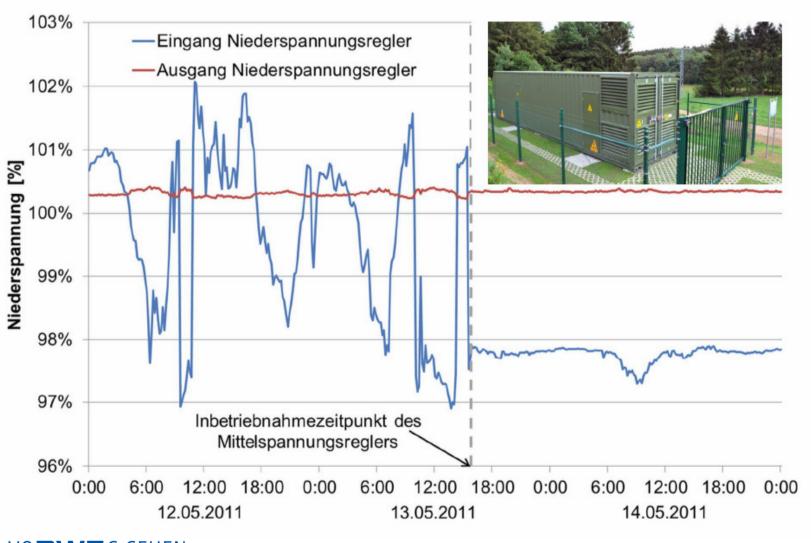
¹⁾ Dabei ist zu beachten, dass allgemein gilt $P_{max} < P_{inst}$

Beteiligung von EE-Einspeisern an Spannungshaltung in Verteilnetzen reduziert Netzausbaubedarf


> Eine gezielte cos(φ)-Regelung bei den dezentralen Einspeisern reduziert unzulässige Spannungsüberhöhungen

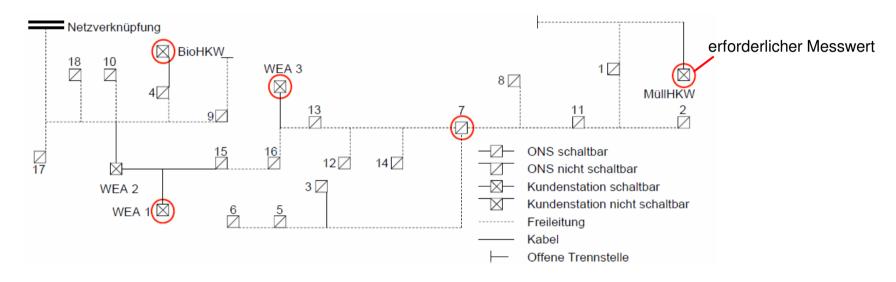
- Aktualisierte technische Regelwerke schreiben unterschiedliche Optionen zur cos(φ)-Regelung für neue EE-Einspeiser vor (z. B. fixer cos(φ), Kennlinienverfahren)
- > Der Netzbetreiber kann aus diesen Optionen über seine Netzanschlussbedingungen wählen, um die EE-Einspeiser effizient in die Spannungsregelung einzubinden


RWE nimmt eine aktive Rolle im Themenkomplex "Smart Grids / Smart Meter" wahr



Die RWE Smart Grid Roadmap umfasst die Vertretung von Netzinteressen durch Engagements und F&E Aktivitäten sowie Pilotprojekte im Übergangsbereich zu "Smart Markets" und "Smart Customer".

Pilotprojekte in allen Spannungsebenen zeigen Wege für eine effiziente Umgestaltung der Verteilnetze

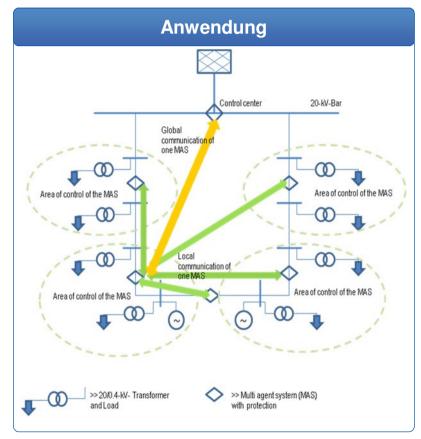


Kontinuierliche Ausregelung der Netzspannung durch MS/MS und NS/NS Spannungsregler

Ausreichende Beobachtbarkeit ist durch 25 Messpunkte in einem Netzbereich mit 2.305 Hausanschlüssen gegeben

Exemplarischer MS-Abgang aus der Modellregion "Smart Country"

- > Auswertung realer Messdaten zeigt hohe Redundanz flächendeckender Messwerte
- Sezielte Positionierung von Messgeräten an
 - Standorten mit großen Einspeisern und
 - zentralen Netzknoten


ermöglicht ausreichende Netzbeobachtbarkeit bei deutlich geringerem Investitionsund Kommunikationsaufwand

Erhöhung der Beobachtungs- und Steuermöglichkeiten im Mittelspannungs-Netz durch GRID4EU

Aufgabe und Zielerwartung

- > Verbesserung und Optimierung bestehender Netze aufgrund der folgenden Bedingungen:
 - Zunahme dezentraler Erzeuger kann zu möglichen Überlast-situationen einzelner Assets führen
 - Überlast bleibt i.d.R. bis Ausfall unerkannt.
- > Aufbau von Beobachtungs- und Kontrolleinrichtungen für Mittelspannungsnetze
- Zunehmende Automatisierung des MS-Netzes (automatische Fehlererkennung, selbstheilende Strukturen) mittels autonom agierender Multi-Agenten-Systemen
- > Höhere Zuverlässigkeit und kürzere Ausfallzeiten nach Fehlerfällen
- Durchführung von 6 lokalen
 Demonstrationsprojekten, eines davon unter Führung der RWE Deutschland AG

Virtuelles Kraftwerk – Dienstleistung zur besseren Integration und Vermarktung kleiner Erzeugungsanlagen

- Zusammenschaltung kleiner, dezentraler Stromerzeuger zu einem zentral gesteuerten Verbund
- Virtuelle Kraftwerksleistung lässt sich gebündelt besser vermarkten und effizienter in zukünftige Netze integrieren.
- RWE vermarktet seit Februar 2012 das virtuelle Kraftwerk als Dienstleistungsangebot.
- Bis heute konnten bereits mehr als 800 MW im virtuellen Kraftwerk gebündelt werden.

E-DeMa – neue Technologien und dezentrale Erzeugung sind im Marktplatz der Zukunft integriert

Wesentliche Aufgabeninhalte

- > Incentivierung von Haushaltskunden und Steuerung von Endgeräten zur Last-Flexibilisierung
- > Aufbau und Betrieb eines Marktplatzsystems
- > Realisierung einer **IKT-Architektur**

Gewonnene Erkenntnisse

- > Kunden nutzen Möglichkeiten der Lastverlagerung mit 3%-4% nur wenig, aber sie reagieren!
- > Erst Incentivierung führt zu verändertem Kundenverhalten!
- > Lieferanten-/Produktwechsel ist über den Marktplatz schnell umsetzbar
- > Marktplatz- und Aggregator-Leitsystem voll funktionsfähig
- > Hohe Kundenakzeptanz bei Inhouse-Kommunikation sensible Kundendaten bleiben im Haus
- > Gateway-Technologie arbeitet stabil

Fazit

- > Die Energieversorgung der Zukunft wird sich dramatisch verändern:
 - Die Energieerzeugung aus Erneuerbaren Quellen und Kraft-Wärme-Kopplung wird weiter ansteigen.
 - "Gesellschaftliche" Herausforderungen gehen zukünftig in die Netzplanung ein.
 - Der Kunde wird zu einem aktiven Partner auf den Energiemärkten mit intelligenten Anschlüssen und Geräten (Smart Meter, Elektrofahrzeuge, ...)
- > Die zunehmende Komplexität von Mittel- und Niederspannungsnetzen wird den Betrieb eines Verteilnetzes nachhaltig verändern.
- > Die Strukturen unserer **Netze** müssen die **zukünftigen Anforderungen** bewältigen. Dazu sind enorme **Investitionsanstrengungen** notwendig. Voraussetzung dafür ist eine **investitionsfreundliche Regulierung.**
- Es gibt keine pauschale Antwort auf die Frage "Kupfer oder Smart Grid", die Lösung liegt in der Betrachtung des Einzelfalles.