

Münchener Kreis – Netzneutralität. Netzmanagement/Best-Effort/QoS.

Beitrag zur Diskussion

Innovation in video streaming is just one example to show that any static definition or regulation of QoS is soon overtaken by reality.

Innovation impacts QoS

Trends in Video Streaming (Example)

- Video on mobile devices become daily life service. supporting also HD and 3D TV.
- Further dimensions like 3D and holography, new applications like FreeViewpointTV.
- Hi-Resolution screen already in the market (e.g. iPhone 4G), Micro projectors to appear soon.
- New technologies: Flexible, head mounted, inorganic and sensing displays.

Key Message

- Innovations in infrastructure and radio networks, along with ongoing digitization, give rise to range of new technologies and applications, whose QoS demands cannot be forecasted accurately
- QoS parameters like bandwidth, delay, jitter and packet loss can only be predicted at cluster levels with imprecision

QoS Enablers can guarantee network performance for inelastic real-time IP services, which in turn improves QoE for customers

From a large variety of Telco's Internet-related assets, Quality of Service (QoS) can be a significant one.

What is QoS good for and why? Telcos are in a unique position to offer improved and assured QoS to customers.

Telekom is actively researching mechanisms to provide guaranteed end-to-end QoS to customers in cross-carrier environments.

Illustration: end-to-end QoS. The Enabler QoS is an important aspect in the enabler eco-system.

Description

- Multi-operator architecture: Multiple ISPs can define a common service offer covering network access and Internet services
- End-to-end QoS provisioning through different QoS domains; QoS domains with different QoS mechanisms (e.g. QoS control through IMS, managed domain, etc.)
- Over the top control plane/process for co-ordination of end-to-end QoS provisioning no direct control of the QoS domains hence control based on request and confirmation and willingness of the operator to support the QoS request

	Basics	
Current Status	 Bandwidth increases Service differentiation/QoS is needed to support different services and applications 	
Strategic Development	 Services and applications request different QoS 	
Market Influence	 Offer service differentiation to customers with willingness to pay 	
Stakeholders' Impact	Monetize investmentsSupport innovation leadDifferentiation from competitors	
DT impact on regulation	 Service differentiation/QoS drives regulation 	
Short Assessment		
 Service differenti traffic Monetization cha differentiation maintenantiation 	iation/QoS necessary with raising	

- Regulatory restrictions critical

QoS Enablers provide QoE to customers.

Innovation creates new services whose network demands cannot be forecasted precisely. Telcos can offer QoS enablers to guarantee QoE to customers in such a scenario.

QoS will be the most valuable enabler – a non-discriminatory offering will play a key role.

Key assumptions

- Highest QoS for everybody is not feasible

- In addition to QoS traffic there will be significant network resources for best effort traffic

	QoS Large Accounts	 Specific agreements with large accounts might happen but will not limit access to QoS pre-products for others
Copen to everyone, access via standardized APIs, combined w/ payment enablers etc. to facilitate QoS usage for small 3 rd parties (also: "retail QoS")	QoS long tail	 DT will offer QoS to the long-tail via the same enabling interfaces as to large accounts
	Best effort customers	 There will always be best effort

Even cloud services require cross-carrier QoS to span production, delivery and consumption domains.

Backup.

DT offers its network/IT assets and capabilities for own and 3^{rd} party services.

The term "Cloud Computing" comprises SaaS, PaaS and IaaS offerings.

"Cloud Computing" term is used for various offerings. Common denominator: price depends on usage (utility computing); all services delivered from a central location via the Internet/intranet.

Potential for Cloud QoS management exists across production, delivery and consumption domains. However, Telcos can significantly impact delivery domain through QoS management.

Production	 Optimize the software architecture for delivery from the cloud, enabling global distribution and thereby faster delivery. Set up data centers so that computing resources can be provisioned and combined in a flexible way. Thereby, resources are available to web applications as needed, reducing bottlenecks.
Delivery	 Create content/application delivery networks adapted to Cloud offerings. Offer interface for web applications to set network QoS parameters. This specifically involves QoS handover at peering points, QoS management for the last mile and QoS management in radio cells. Transcode content for mobile consumption, e.g. video transcoding for YouTube.
Consumption	 Optimize smart phone operating systems for business requirements, enable them to manage network QoS. Speed up web browsers (not Telco business).

Research example: Wireless LAN.

Telcos can improve the VoIP quality for end-users in wireless LANs through packet aggregation mechanism.

Problem statement

- Wireless LANs (IEEE 802.11) currently support only a limited number of concurrent VoIP-calls
- This leads to reduced service quality for the users in case of parallel usage

Proposed Telco solution

- Aggregating small packets to larger ones in wireless network leads to better service quality
- Does not require any change on the user side
- Reduces end-to-end latency (for users) and improves network efficienty (for Telcos)
- Mechanism tested successfully in T-Labs

* FUZPAG: Fuzzy Controlled Packet Aggregation; 3 hops with 54 Mbit/s (physical layer)

Packet Aggregation is a technical solution from Telcos leading to a better service quality for the user