Beyond 3G: from 3G to Seamless Intertechology Wireless Networks

Minoru Etoh, Ph.D.
President & CEO
DoCoMo Communications Labs USA, Inc.
Outline

- Lessons from 3G
- What we need: Killer Applications
- 4G Mobile Networks: why, what, how
- 4G Imperatives: RAN, IP Network, and Service Ubiquity
- Conclusion
Lessons from 3G

- UMTS deployments in Europe is slow so far.
 - may be 2.5G/GPRS + WLAN/802.11
 Will 802.11 work in small devices? → No.
 Issues: Power consumption, no high speed mobility. → Primarily a laptop medium.

- Heavy standardization
 cost, optimality, etc..

- DoCoMo’s 3G Network
 - High bandwidth, lots of capacity
 - It has been said that no significant eye- or ear-catching services yet.
 But …
Application Plan in 3G

- Image-clipping with i-mode
- i-motion
- Possible to use FOMA and 2G phones with a single phone number
- Dual network service
- PDA type
- 2G/3G dual phone
- Smaller, lighter handsets with longer battery time
- Video Delivery
- Music Delivery
- Visual mail
- Send visual images instantly as mail
- International roaming
- Mobile EC
- Location information
- New service deployment
- Handset enhancement

Upon service launch
Current Picture Mail Services

NTT DoCoMo’s Multimedia Mail Service
0.3 M pels CMOS/CCD

1. URL notification
2. Retrieve image by URL

30KB JPEG
in 2G

100KB MPEG
in 3G

i-shot Server
i-motion Server
Ubiquitous Computing World enabled by

APIs for IrDA, Bluetooth and Non-contact IC, 100KB footprint, 10MB Memory Space. Authorized download XML-protocol, etc.

DoCoMo’s Java Phone is now comparable to i-PAQ, and more than Palm.
Two approaches to creating Killer Applications

- to follow what successfully happened in the legacy Internet.

 Example: E-mail and web browsing in i-mode

- to recognize what value 'mobile' adds.
 That is “ubiquity”, in other words, service availability.

Example in Consumer Electronics: Sony’s Walkman

Multimedia mail and Java Applications (e-commerce) are now taking-off.
4G Imperatives: RAN

Spectrum will remain the vital resource.

New capabilities of Systems Beyond IMT-2000

ITU-R Vision

- Peak Useful Data Rate (Mb/s)
- Mobility
 - High
 - Low
- IMT-2000
- Enhanced IMT-2000
- New Mobile Access
- New Nomadic / Local Area Wireless Access

Dashed line indicates that the exact data rates associated with Systems Beyond are not yet determined.
DoCoMo’s 4G Broadband Packet Wireless Access Test-bed

Purpose

- Demonstrate maximum throughput of more than 100Mbps and 20Mbps in the forward and reverse links
- Clarify key technologies for broadband packet wireless access
- Evaluate real broadband channel conditions
- Evaluate IP packet transmission via real wireless channel

Schedule

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th></th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/4</td>
<td>1/4</td>
<td>2/4</td>
<td>3/4</td>
</tr>
<tr>
<td>3/4</td>
<td>4/4</td>
<td>1/4</td>
<td>2/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4</td>
</tr>
</tbody>
</table>

- Development (Manufacturing)
- Connection test and experiments

COPYRIGHT NTT DoCoMo and DoCoMo USA Labs
4G: ITU-R view

Seamless Intertechology Wireless Networks

Source: ITU-R
WP8F Vision

COPYRIGHT NTT DoCoMo and DoCoMo USA Labs
Slide 10
4G Imperatives:
IP Network

- True convergence with the Internet is critical
 - IP must be supported efficiently
 - Not primarily to decrease costs but to enable services
 - Remove discontinuities at the wired/wireless interface and the data/voice interface
 - The Internet must also evolve to support wireless mobility and ubiquity efficiently.
Ubiquity as Service Availability

- **Ubiquity**
 - number of terminals/distribution density/real time/total information volume,

- **Mobility**
 - High-speed
 - High-capacity
 - Low bit cost
 - IP-based

- **Ubiquitous NW**
 - Nomadic Wireless Access
 - Millimeter wave

- **Information Speed (Mbit/s)**
 - 2G
 - 3G
 - 3.5G
 - 4G

- Low-speed & capacity
- Intermittent & scattered
- Very large number
- IP-based / non IP-based?
4G Imperatives:
Ubiquitous Service Platform

Functional Leap with the second waist

3.5G

Service Ubiquity

connectivity

Heterogeneous Radio Access Network

Heterogeneous Radio Access Network

Applications

Web services middleware
Summary

- Lessons from 3G → We need Killer Applications
 Candidates: Enhanced Web Access, Multimedia Mail, Java applications
- 4G Imperatives: RAN, IP Network, and Ubiquitous Service Platform.
- 4G should be defined in terms of applications, services & markets
 - Not purely by air interface protocol, (IP) backbone or bandwidth
- ‘Ubiquity ‘is the key word to go further beyond 3G.
Definition of 4G Network

4G Network =
Heterogeneous RAN +
Advanced IP Network +
Service Ubiquity +
Business Model - COST
Appendix
DoCoMo’s Approaches to 4G System Infrastructure Development

Backgrounds
- Deployment of Wireless LAN
- User needs for broadband, fixed amount tariff
- Universalized IP technologies
- Network operators and services independent of infrastructure (MVNO)

Requirements
- Efficient area coverage
- Integration of diversified access systems
- Development of IP applications in wireless network
- Always-on connections
- Lower cost
- Enhancement of service competitiveness

Approaches
- Affirmative deployment of the system into indoor area
- Support of multiple access systems and seamless connections between them
- Efficient and high quality transmission of multimedia traffic
- Earlier deployment of All-IP network
- Network platform to enable new services facilely
- International standardizations

Backgrounds
- Efficient and high quality transmission of multimedia traffic
- Support of multiple access systems and seamless connections between them
- Earlier deployment of All-IP network
- Network platform to enable new services facilely
- International standardizations

Requirements
- Affirmative deployment of the system into indoor area
- Support of multiple access systems and seamless connections between them
- Efficient and high quality transmission of multimedia traffic
- Earlier deployment of All-IP network
- Network platform to enable new services facilely
- International standardizations

Approaches
- Affirmative deployment of the system into indoor area
- Support of multiple access systems and seamless connections between them
- Efficient and high quality transmission of multimedia traffic
- Earlier deployment of All-IP network
- Network platform to enable new services facilely
- International standardizations

These approaches aim to enhance network coverage, support diverse access systems, and enable efficient and high-quality multimedia traffic transmission, while also facilitating the deployment of All-IP networks and the development of new services through international standardizations.
Mobile Network Generations

- **1st Generation**
 - Analog Cellular
 - Voice
 - Low speed data (64kbps)
 - 1980s

- **2nd Generation**
 - Digital Cellular
 - Voice
 - High speed data (384kbps, 2Mbps)
 - Growing stage
 - 1990s

- **3rd Generation**
 - IMT-2000
 - Voice
 - Multimedia communications
 - Expansion stage
 - 2000s

- **4th Generation**
 - Super high speed
 - Mature stage
 - 2000s

- **AMPS**
- **TACS**
- **NMT**
- **NTT High Cap**
- **GSM**
- **IS-95**
- **PDC**
- **PHS**

Copyright NTT DoCoMo and DoCoMo USA Labs
4G Ubiquitous Architecture: The Basic Model of DoCoMo US Labs

DoCoMo Applications

Voice

3rd-party Applications

DoCoMo Middleware (Seamless Support)

3rd-party Middleware

IP-Based Core Network:
DoCoMo-owned and operated (AAA, Mobility Support)

3G / FOMA Access
3G / 3rd-party Access
DoCoMo WLAN Hotspot
3rd-party WLAN Hotspot
PAN, CAN, AAN etc.

DoCoMo 4G Access Network

Emerging Access

DoCoMo API
OPEN API
PROPRIETARY API
OPEN API
OPEN API

COPYRIGHT NTT DoCoMo and DoCoMo USA Labs
4G Imperatives: IP Network

- True convergence with the Internet is critical
 - IP must be supported efficiently
 - Not primarily to decrease costs but to enable services
 - Remove discontinuities at the wired/wireless interface and the data/voice interface
 - The Internet must also evolve to support wireless mobility and ubiquity efficiently. Examples:
 - IP is in the RAN
 - VoIP is in the core and backbone
 - Data handoff occurring between heterogeneous radio technologies
4G Imperatives: Ubiquitous Service Platform

Innovative applications, not voice, will be the key revenue generator

⇒ Programmability and Open APIs
 AAA, mobility and ‘plug and access’
 (Note: programmability does not equal “active networks” a la DARPA)

⇒ Foster a 3rd-party app developer community
 Build on work centered on fixed networks (Parlay, JAIN, OSA)

⇒ The search for the killer app should never end
 Any static portfolio of applications and services will eventually become a commodity

⇒ Radical personalization and niche applications

Applications with a market size of 1